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Abstract—Exploiting task parallelism is getting increasingly

difficult for diverse and complex scientific workflows running
on High Performance Computing (HPC) systems. In this paper,
we argue that the difficulty rises from a void in the spectrum
of existing data-transfer models for resolving inter-task data
dependence within a workflow and propose a novel model to
fill that gap: Ubique. The Ubique model combines the best
from in-transit and in situ models in order for loosely coupled
producer and consumer tasks to run concurrently and to resolve
their data dependencies efficiently with little or no modifica-
tions to their codes, striking a balance between transparent
optimization, productivity, and performance. Our preliminary
evaluation suggests that Ubique can significantly outperform the
parallel file system (PFS)-based model while offering automatic
data transfer and synchronization which are the features lacking
in many traditional models. It also identifies the performance
characteristics of its key depending subsystems, which must be
understood for further broadening its benefits.

I. MOTIVATION AND CONTRIBUTIONS

As a growing number of scientific domains are leveraging
HPC to answer some of the most challenging scientific ques-
tions, HPC is quickly becoming the third “pillar” of science, in
addition to theory and experiments. However, this increasing
diversity also creates a greater convergence of traditional HPC
with new modeling and simulation methods as well as data
analysis and data science approaches like Machine Learning
(ML) and Artificial Intelligence (AI). A myriad of these
methods are often combined into scientific workflows in many
new and exciting ways [1]–[4], ushering in a new era of diverse
and complex scientific workflows.

One of the defining features of these workflows is complex
dependence between their tasks. In particular, how data files
are produced by one task and subsequently consumed by
another task represents one of the most important dependence
classes for a workflow to proceed in a performant fashion.
Specifically, the inter-task data dependence known as the
producer-consumer pattern is commonly found in a wide
range of emerging workflow initiatives including those that
incorporate ML and AI [2], [5], [6].

As composite science workflows become more and more
complex, researchers find the construction and optimization
of a workflow increasingly challenging. In this scheme, they
select preexisting composable workflow-management software

components and flexibly blend them with a disparate set of
domain-specific application and management software so as
to create a scalable end-to-end science workflow [1]–[7].

There exists various approaches to resolve the inter-task data
dependence, including those based on a PFS, a in transit model
[2], [8]–[10] or an in situ model [11]–[16]. However, each of
these approaches retains one or more of the following major
drawbacks:

• Lack of synchronization support at the file/data object level:
requires workflow themselves to synchronize consumer and
producer tasks to handle cases like a consumer task attempt-
ing to read a file before the producer completes its writing;

• Conflict with code change requirements: Many emerging
workflows compose reusable components with minimum or
no code change requirement on the pre-existing programs,
and hence extensive changes needed to implement the
aforementioned synchronization mechanism are often a non-
starter;

• Poor temporal/spatial locality: Workflows use coarse
grained synchronization thereby a consumer task does not
start its program execution before its dependent producer
finishes its entire program execution, incurring distant tem-
poral distance to resolve a data dependency, and each file
travels a long spatial distance, missing bypass opportunities;

• Low file metadata-operation performance: Massive numbers
of small files are often employed for emerging ML-based
workflows, and hence the performance of file transfers is
ultimately limited by the metadata performance of the PFS.

Hence, we propose Ubique, a novel data file transfer
model to overcome the limitations of the existing models
in resolving inter-task data dependence. The Ubique model
combines the best from in situ and in-transit models to offer
highly performant—yet non-intrusive–solutions for workflow
use. Ubique is specifically defined by three properties: a)
producer and consumer tasks within a workflow write/read
files to/from a Ubique-managed file-paths name space; b)
Ubique is solely responsible for optimizing how produced files
are transferred between tasks and how the transfer operations
remain transparent to the tasks; c) Ubique synchronizes file
access at individual file level, removing the need for the work-
flow itself to implement its own synchronization mechanism.
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Fig. 1. Comparison of producer-consumer benchmark runs

Specifically, we make the following contributions:

• The design points of Ubique in relation to other data-transfer
models that are in use for inter-task data dependence;

• We define transparent file-level synchronization techniques
and an evaluation of transparency for a representative HPC
language at the Application Binary Interface (ABI) level;

• We perform an empirical exploration of the performance and
scalability.

A. Transparency and intrusiveness

Ubique delivers its benefits without requiring users to mod-
ify their code. It currently provides a complete transparent
interface for C language. The C library contains the wrapper
functions of open()/close() and fopen()/fclose(), and
intercepts C file I/O calls via dynamic linking and symbol
replacement. This is possible because C runtimes provide ABI-
level guarantees to allow for transparently intercepting our
target POSIX file I/O calls:

LD_PRELOAD=libdyad_sync.so:${LD_PRELOAD} ./app

B. Performance evaluation

Figure 1 compares the performance with PFS and with
Ubique. With the former, producer-consumer pairs share data
files via Lustre. With the latter, files are written to and
read from tmpfs. For the files of size 1B and 10M, Ubique
outperforms the alternative by a factor of 3 on average and 4.7
maximum. We set the interval between successive readings
or writings to 1 sec while transferring 64 files by each
producer-consumer pair, mimicking the computation load of
both producers and consumers.

II. CONCLUSION

In this paper, we propose Ubique, a new data file transfer
model to enable modern HPC workflows to expose and ex-
ploit task-level parallelism. For this purpose, it transparently
resolves data dependence between workflow tasks via fine-
grained synchronization and direct data file transfers over
network while avoiding persistent storage I/O bottlenecks. Our
initial evaluation shows that Ubique outperforms the PFS-
based model for small to medium size data files by a factor
of 3 on average. Our study significantly lights our path to
advancing our proposed model for broader HPC workflow use.
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