
IM-POST-XXXXX

tid.llnl.gov/print

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52 07NA27344.

Exploiting task parallelism is getting increasingly difficult for diverse and
complex scientific workflows running on High Performance Computing
(HPC) systems. We argue that the difficulty rises from a void in the spectrum
of existing data-transfer models for resolving inter-task data dependence
within a workflow and propose a novel model, Ubique, to fill that gap.
The Ubique model combines the best from in-transit and in situ models in
order for loosely coupled producer and consumer tasks to run concurrently
and to resolve their data dependencies efficiently with little or no
modifications to their codes, striking a balance between transparent
optimization, productivity, and performance. Our preliminary evaluation
suggests that Ubique can significantly outperform the parallel file system
(PFS)-based model while offering transparent data transfer and
synchronization which are the features lacking in many traditional models.

ABSTRACT

CHALLENGES

Problem: Couple an application that produces data with another that consumes the
data with minimum or no code change.

No code change allows the benefits of
• Productivity (Fast construction of workflows with less effort)
• Easy debugging
• Portability (independent of any specific API other than widely used POSIX IO)

Performance benefits:
• Use of local storage enables faster accesses to storage, and allows avoiding

metadata operation bottleneck of PFS.
• Fine-grain file level synchronization with Ubique exposes further parallelism.

BENEFITS RESULT

REFERENCES

[1] C. Docan, M. Parashar, and S. Klasky, “Dataspaces: An interaction and
coordination framework for coupled simulation workflows,” in ACM Intl. Symp. on
High Performance Distributed Computing, 2010
[2] Maestro Workflow Conductor, https://maestrowf.readthedocs.io/en/latest/
[3] D. H. Ahn, N. Bass et al., “Flux: Overcoming scheduling challenges for exascale
workflows,” Future Generation Computer Systems, vol. 110, pp. 202–213, 2020.
[4] DYAD repository: https://github.com/flux-framework/dyad

ACKNOWLEDGMENTS

This work was performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DEAC52-07NA27344.
LLNL-POST-840859

There exists various approaches to resolve the inter-task data dependence,
including those based on a shared parallel file system (PFS), a in-transit
model or an in situ model [1]. However, each of these approaches retains one
or more of the following major drawbacks:
• Lack of synchronization support at the file/data object level: requires

workflow themselves to synchronize consumer and producer tasks to
handle cases like a consumer task attempting to read a file before the
producer completes its writing.

• Conflict with code change requirements: Many emerging workflows
compose reusable components with minimum or no code change
requirement on the pre-existing programs, and hence extensive changes
needed to implement the aforementioned synchronization mechanism are
often a nonstarter.

• Poor temporal/spatial locality: Workflows use coarse grained
synchronization thereby a consumer task does not start its program
execution before its dependent producer finishes its entire program
execution, incurring distant temporal distance to resolve a data dependency,
and each file travels a long spatial distance, missing bypass opportunities.

• Low file metadata-operation performance: Massive numbers of small
files are often employed for emerging ML-based workflows, and hence the
performance of file transfers is ultimately limited by the metadata
performance of the PFS.

∗ Lawrence Livermore National Laboratory, †NVIDIA Corporation, ‡Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville

Jae-Seung Yeom∗, Dong H. Ahn†, Ian Lumsden‡, Jakob Luettgau‡, Silvina Caino-Lores‡, Michela Taufer‡

Ubique: A New Model for Untangling Inter-task Data Dependence in Complex HPC Workflows

APPROACH

Experimental setup:
• 1 second-long computation between file I/Os.
• 1 process (either producer or consumer) per node.
• Each producer-consumer pair exchanges 64 files.
• Measured on Quartz@LLNL: Intel Xeon E5-2695 v4 w/ 128 GB
• Node local storage of DYAD: tmpfs (memory)
• Parallel File System: Lustre

Parallel File System

In-transit

Ephemeral FS

Ubique

In situ

M
PI

Performance,
Fined-grained
Synchronization

• Sharing data across jobs
that do not necessarily
run concurrently.
• No sync for concurrent

jobs or ranks of a job
results in polling or
serializing

• Sharing across MPI ranks
of a job

• Sharing across job steps
(or local MPI ranks with
explicit sync)

• Not flexible
• Small capacity
• Custom coding

Capacity,
Flexibility

• Performance as close as in-situ
• Fine grained sync
• Capacity as close as in-transit

- description: producer task
name: run-producer
run:

cmd: producer

- description: consumer task
name: run-consumer
run:

cmd: consumer
depends: [run-producer]

void producer() {
for (i=1; I <= N; i++) {

produce(data[i])
write(data[i]);

}
}

(a) Producer-consumer example (b) Maestro [2] specification in YAML

void consumer() {
for (i=1; I <= N; i++) {

read(data[i]);
consume(data[i])

}
}

Solution 1: Traditional approach, as exemplified with Maestro, relies on a shared
file system and an explicit synchronization between the end of the producer
application and the start of the consumer.

Solution 2: Ubique approach relies on local storages as well as transparent data
transfer between storages and synchronization per shared file.

(a) Solution 1 (b) Solution 2

IMPLEMENTATION

CONCLUSIONS

• We propose Ubique, a new data file transfer model to enable modern HPC
workflows to expose and exploit task-level parallelism.

• It transparently resolves data dependence between workflow tasks via fine-
grained synchronization and direct data file transfers over network while
avoiding persistent storage I/O bottlenecks, which are the features lacking in
many traditional models.

• Our preliminary evaluation suggests that Ubique can significantly outperform the
parallel file system (PFS)-based model.

• Ubique also offers enhanced productivity and portability of workflows.

From synthetic benchmark of producer-consumer pattern

LD_PRELOAD=dyad_wrap.so:${LD_PRELOAD} ./app

• Running the dyad service with FLUX [3]
• flux exec r all flux module load dyad.so /ssd/managed_dir

• Running a user application written in C with the I/O intercepting wrapper

USER INTERFACE

DYAD [4]
§ DYAD module (or service) runs on each node.
§ DYAD wrapper only intercepts I/O on files under the directory it manages.
• If a file is on a local storage (LS), synchronize accesses and transfer it.
• If it is on a shared storage, only synchronize accesses.

Producer
§ p.1 write(manged_dir/filepath)
§ p.2 publish(<filepath, prod_rank>)
• If a file is written into managed_dir or its subdirectory, DYAD registers

the filepath into the global key-value-store (KVS) of FLUX.
• KVS entry is a pair of filepath and prod_rank, where prod_rank is the

FLUX rank of the service on the node where the producer is running on.
Consumer
§ c.1 query(filename)→ prod_rank
• Consumer queries KVS to obtain the rank of the file owner (producer).

Then, blocking wait.
§ c.2 rpc_get(prod_rank, filename)

• Ask the owner rank to transfer the file. Once received, store it on LS
§ c.3 make a copy of the data file on consumers LS
§ c.4 read(managed_dir/filename)

DYAD: An embodiment of the Ubique model under FLUX [3] resource and job
management system.

18th IEEE International Conference on eScience, October 10-14, 2022, Salt Lake City, Utah, USA

