

DYAD: Dynamic and Asynchronous Data Streamliner

DYAD is a synchronization and data movement tool for computational science workflows built
on top of Flux. DYAD aims to provide the benefits of in situ and in transit tools
(e.g., fine-grained synchronization between producer and consumer applications, fast data
access due to spatial locality) while relying on a file-based data abstraction to maximize
portability and minimize code change requirements for workflows.
More specifically, DYAD aims to overcome the following challenges
associated with traditional shared-storage and modern in situ and in transit data movement approaches:

	Lack of per-file object synchronization in shared-storage approaches

	Poor temporal and spatial locality in shared-storage approaches

	Poor performance for file metadata operations in shared-storage approaches (and possibly some in situ and in transit approaches)

	Poor portability and the introduction of required code changes for in situ and in transit approaches

In resolving these challenges, DYAD aims to provide the following to users:

	Good performance (similar to in situ and in transit) due to on- or near-node temporary storage of data

	Transparent per-file object synchronization between producer and consumer applications

	Little to no code change to existing workflows to achieve the previous benefits

User Docs:

	Getting Started
	Prerequisites

	Installation

	Using DYAD’s APIs

	Running DYAD

Tutorials

	ECP Tutorial: February 10, 2023

References

	Publications and Presentations
	Posters

Contributing

	Developer Guide

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

Prerequisites

DYAD has the following minimum requirements to build and install:

	A C99-compliant C compiler

	A C++11-compliant C++ compiler

	Autoconf 2.63

	Automake

	Libtool

	Make

	pkg-config

	Jansson 2.10

	flux-core

Installation

Manual Installation

Attention

Currently, DYAD can only be installed manually. This page will be updated as additional
methods of installation are added.

Note

Recommended for developers and contributors

You can get DYAD from its GitHub repository [https://github.com/flux-framework/dyad] using
these commands:

$ git clone https://github.com/flux-framework/dyad.git
$ cd dyad

DYAD uses the Autotools for building and installation. To start the build process, run
the following command to generate the necessary configuration scripts using Autoconf:

$./auotgen.sh

Next, configure DYAD using the following command:

$./configure --prefix=<INSTALL_PATH>

Besides the normal configure script flags, DYAD’s configure script also has the following
flags:

	Flag

	Type (default)

	Description

	–enable-dyad-debug

	Bool (true if provided)

	if enabled, include debugging prints and
logs for DYAD at runtime

	–enable-perfflow

	Bool (true if provided)

	if enabled, build PerfFlow Aspect-based
performance measurement annotations for
DYAD

Note

The installation prefix (i.e., --prefix) is also used to try to locate flux-core.
First, configure will look for flux-core in the installation prefix. If it is not
found there, configure will then use pkg-config to locate flux-core.

Finally, build and install DYAD using the following commands:

$ make [-j]
$ make install

Building with PerfFlow Aspect Support (Optional)

DYAD has optional support for collecting cross-cutting performance data using
PerfFlow Aspect [https://perfflowaspect.readthedocs.io/en/latest/]. To enable this support,
first build PerfFlow Aspect for C/C++ using
their instructions [https://perfflowaspect.readthedocs.io/en/latest/BuildingPerfFlowAspect.html#c-build].
Then, modify your method of choice for building DYAD as follows:

	Manual Installation: add --enable-perfflow to your invocation of ./configure

Using DYAD’s APIs

Currently, DYAD provides APIs for the following programming languages:

	C

	C++

This section describes the basics of integrating them into an application.

C API

DYAD’s C API leverages the LD_PRELOAD trick [https://www.admin-magazine.com/HPC/Articles/Preload-Trick]
to integrate into user applications. As a result, users can utilize DYAD’s C API by
simply adding the following before the shell command that launches their application:

$ LD_PRELOAD=path/to/dyad_wrapper.so

Once preloaded, DYAD’s C API will intercept the open and fopen functions when consuming
files and the close and fclose functions when producing files. As a result,
if their code already uses thse functions, users do not need to change their code.

C++ API

DYAD’s C++ API is implemented as a small library that wraps C++’s Standard Library file streams.
To use DYAD’s C++ API, first, add the following to your code:

#include <dyad_stream_api.hpp>

This header defines thin wrappers around the file streams provided by the C++ Standard Library.
More specifically, it provides the following classes:

	dyad::basic_ifstream_dyad

	dyad::ifstream_dyad

	dyad::wifstream_dyad

	dyad::basic_ofstream_dyad

	dyad::ofstream_dyad

	dyad::wofstream_dyad

	dyad::basic_fstream_dyad

	dyad::fstream_dyad

	dyad::wfstream_dyad

When using DYAD, these file streams should be used in place of the file streams from the C++
Standard Library. The DYAD file streams should be directly used to do the following:

	Open files (with the file stream’s open method)

	Close files (with the file stream’s close method or destructor)

	Access the underlying C++ Standard Library file stream using the DYAD stream’s get_stream method

All reading from and writing to files should be done using the underlying C++ Standard Library file stream.
A simple example of using DYAD’s C++ API in a producer application is shown below:

#include <dyad_stream_api.hpp>

void produce_file(std::string& full_path, int32_t* data, std::size_t data_size)
{
 dyad::ofstream_dyad ofs_dyad;
 ofs_dyad.open(full_path, std::ofstream::out | std::ios::binary);
 std::ofstream& ofs = ofs_dyad.get_stream();
 ofs.write((char*) data, data_size);
 ofs_dyad.close();
}

After replacing C++ Standard Library file streams with their DYAD equivalents,
there is one final requirement to using the C++ API. When compiling your code,
you must link the associated library (i.e., libdyad_stream.so or
libdyad_stream.a). This library can be found in the lib
subdirectory of the install prefix.

Running DYAD

There are three steps to running DYAD-enabled applications:

	Create a Flux key-value store (KVS) namespace

	Determine the managed directories for each application

	Load DYAD’s Flux module

	Configure and run the DYAD-enabled applications

Create a Flux KVS Namespace

DYAD uses its own namespace in Flux’s hierarchical key-value store (KVS) to isolate
itself from the KVS entries from other Flux services. Thus, the first step in running DYAD
is to create a KVS namespace. This namespace is used by DYAD to exchange
file information (e.g., the Flux broker that “owns” a file) needed to synchronize
the consumer application and transfer the file from producer to
consumer. To create this namespace, run the following:

$ flux kvs namespace create <DYAD_KVS_NAMESPACE>

The namespace can be whatever string value you want.

Determine the Managed Directories for Each Application

To determine when to perform synchronization and data transfer, DYAD tracks two directories for
each application: a producer-managed directory and a consumer-managed directory. At least
one of these directories must be specified for DYAD to do anything. If neither are provided, the application
will still run, but DYAD will not do anything.

When a producer-managed directory is provided, DYAD will store information about any file
stored in that directory (or its subdirectories) into a namespace within the Flux key-value
store (KVS). This information is later used by DYAD to transfer files from producer to consumer.

When a consumer-managed directory is provided, DYAD will block the application whenever a
file inside that directory (or subdirectory) is opened. This blocking will last until DYAD sees
information about the file in the Flux KVS namespace. If the information retrieved from the KVS
indicates that the file is actually located elsewhere, DYAD will use Flux’s
remote procedure call (RPC) system to ask DYAD’s Flux module to transfer the file.
If a transfer occurs, the file’s contents will be stored at the file path passed to the
original file opening function (e.g., open, fopen).

Before running the following steps, determine the producer- and/or consumer-managed directories
for each application. These directories will need to be provided to the commands in the next steps.

Note

When opening or closing a file not in the producer- or consumer-managed directories, DYAD
will simply open or close the file. DYAD changes the behavior of opening or closing only the
files in the managed directories.

Load DYAD’s Flux Module

The next step in running DYAD is to load DYAD’s Flux module. The module is the component of DYAD
responsible for sending files from producer to consumer. Once loaded, this module will run whenever
its associated Flux broker receives a relevant remote procedure call from a DYAD-enabled consumer. To load the module,
first, determine where dyad.so is located. This should normally be <PREFIX>/lib/dyad.so. Once you
have found the path to dyad.so, you can load the module on the current Flux broker using:

$ flux module load path/to/dyad.so <DYAD_PATH_PRODUCER>

The dyad.so module takes a single command-line argument: the producer-managed directory. The producer
uses this directory as the root from which the module will look for files to transfer.

Note that the command above will only load the module on the Flux broker on which the command is run.
This can be an issue if you are submitting jobs because you will not know on which broker your jobs will be run.
As a result, it is highly recommended that you launch the DYAD module on all brokers in your Flux instance. You can
do this by running:

$ flux exec -r all flux module load path/to/dyad.so <DYAD_PATH_PRODUCER>

Configure and Run the DYAD-Enabled Applications

Once the KVS namespace and DYAD module are set up, the DYAD-enabled applications can be run. To run a DYAD-enabled
application, simply run your application as normal with certain environment variables set. A table containing the current
environment variables recognized by DYAD is shown below.

	Name

	Type

	Required?

	Default

	Description

	DYAD_KVS_NAMESPACE

	String

	Yes

	N/A

	The Flux KVS namespace that DYAD will use to record or look

for file information

	DYAD_PATH_PRODUCER

	Directory Path

	Yes [1]

	N/A

	The producer-managed path of the application

	DYAD_PATH_CONSUMER

	The consumer-managed path of the application

	DYAD_SHARED_STORAGE

	0 or 1

	No

	0

	If 1 (i.e., true), only provide per-file synchronization of

the consumer (i.e., no transfer)

	DYAD_KEY_DEPTH [2]

	Integer

	No

	3

	The number of levels in Flux’s hierarchical KVS to use

within DYAD’s namespace

	DYAD_KEY_BINS [2]

	Integer

	No

	1024

	The maximum number of unique values for the keys associated

with any given level of Flux’s hierarchical KVS within

DYAD’s namespace

[1]
For DYAD to do anything, at least one of DYAD_PATH_PRODUCER or DYAD_PATH_CONSUMER must be provided.
Applications will still work if neither are provided, but DYAD will not do anything.

[2]
(1,2)
Since the Flux KVS is hierarchical, the number of KVS levels (controlled by DYAD_KEY_DEPTH) and
the size of each KVS level (controlled by DYAD_KEY_BINS) will affect the performance of DYAD. To obtain
optimal performance, tune these values for your use case.

ECP Tutorial: February 10, 2023

Material for the DYAD demo at Flux’s ECP tutorial can be found here.
Additional information about the demo will be added soon.

Publications and Presentations

Posters

	J. Yeom, D. H. Ahn, I. Lumsden, J. Luettgau, S. Caino-Lores,
and M. Taufer, “Ubique: A new model for untangling inter-task data
dependence in complex HPC workflows,” in
2022 IEEE 18th international conference on e-science (e-science),
2022, pp. 421–422. doi:
10.1109/eScience55777.2022.00068 [https://doi.org/10.1109/eScience55777.2022.00068].
Paper PDF | Poster PDF

Developer Guide

Since DYAD is part of the Flux Framework [https://flux-framework.org/], developers
are expect to follow all rules and contribution guidelines specified in the
Collective Code Construction Contract (C4.1 [https://github.com/flux-framework/rfc/blob/master/spec_1.rst]).

Below are some additional links regarding contributing, code styling, and commit
etiquette:

	The ‘Contributing’ Page from the Flux Framework’s ReadTheDocs [https://flux-framework.readthedocs.io/en/latest/contributing.html]

	The Flux Coding Style Guide [https://github.com/flux-framework/rfc/blob/master/spec_7.rst] (used for C code)

	The black Coding Style Guide [https://black.readthedocs.io/en/stable/the_black_code_style/index.html] (used for Python code)

Index

 nav.xhtml

 Table of Contents

 		
 DYAD: Dynamic and Asynchronous Data Streamliner

 		
 Getting Started

 		
 Prerequisites

 		
 Installation

 		
 Manual Installation

 		
 Building with PerfFlow Aspect Support (Optional)

 		
 Using DYAD’s APIs

 		
 C API

 		
 C++ API

 		
 Running DYAD

 		
 Create a Flux KVS Namespace

 		
 Determine the Managed Directories for Each Application

 		
 Load DYAD’s Flux Module

 		
 Configure and Run the DYAD-Enabled Applications

 		
 ECP Tutorial: February 10, 2023

 		
 Publications and Presentations

 		
 Posters

 		
 Developer Guide

_static/plus.png

_static/file.png

_static/minus.png

